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A P P L I C A T I O N  OF T H E  N E W T O N  M E T H O D  TO T H E  C A L C U L A T I O N  

OF I N T E R N A L  S U P E R S O N I C  S E P A R A T E D  F L O W S  

V. A. Bashkin,  I. V.  Yegorov, and D. V. Ivanov UDC 519.6:532.5 

The method of [1] for numerical integration of the two-dimensional Navier-Stokes and Euler equations 
is extended to the solution of problems of internal aerodynamics. A technique for generating a refined 
computation grid in boundary-layer regions depending on the Reynolds number is developed. Calculations of 
the supersonic flow of a perfect gas in a flat duct of variable cross section are performed. The effect of the 
Reynolds number on the structure of the flow field and heat exchange is shown. 

The development of aerospace technology has attracted considerable attention to the application of 
supersonic flows to problems of external aerodynamics and to the development of effective methods of their 
numerical analysis. The Enler or Navier-Stokes equations are commonly used to describe the flow field of 
incompressible and compressible fluids within the framework of fluid dynamics. By virtue of the nonlinearity 
of these partial differential equations, their solution can be obtained only by methods of computational 
aerodynamics. In particular, an effective method of numerical integration of the two-dimensional Navier- 
Stokes equations in the presence of flow separation and reattachment is proposed by Egorov and Zaitsev 
[1]. This method is based on implicit monotone second-order difference schemes and on the modified Newton 
method for solving grid equations. This method was used in studies of some problems related to the supersonic 
or hypersonic flow of a perfect gas [2, 3] or nonequilibrium air [4, 5] past blunt bodies and also in studies of 
supersonic flows of an inviscid gas. 

Great interest in the investigations of internal supersonic flows has been stimulated by the development 
of hypersonic air jet engines. Problems of internal aerodynamics have their specific features, and, therefore, 
the numerical algorithm of solution of the Euler and Navier-Stokes equations requires some modification and 
adaptation to simulate internal supersonic flows. The algorithm developed in [1] was extended in [6] to internal 
flows of a perfect gas at moderate Reynolds numbers. Here primary emphasis was placed on computation grid 
generation by an integral method using the Schwarz-Christoffel integral. Extensive studies on the effect of 
some governing parameters of the difference scheme on the solution of the Euler and Navier-Stokes equations 
have also been performed in [6]. 

In the present paper, this method is further extended to the calculation of supersonic internal flows at 
high Reynolds numbers Re. The problem of constructing a refined computation grid in the boundary-layer 
regions is given particular emphasis. The problem becomes more important as Re increases. The effectivetmss 
of our package of programs is tested by calculating the supersonic flow of a perfect gas in a duct of variable 
cross section over a wide range of Re. 

1. In arbitrary curvilinear coordinates ~,r/ [x = x(~,r/) and y = (~,r/) are Cartesian coordinates], 
the unsteady two-dimensional Euler and Navier-Stokes equations are written in nondimensional variables in 
divergence form as 

0Q 0E 0G 
0t + N + = ~  (1.1/ 

Here the vectors Q, E, and G are related to the corresponding Cartesian vectors Q1, El,  and G1 by the 
formulas Q = JQ1,  E = J ( E l O ~ / O x + G l O ~ / O y ) ,  and G = J(ElOrl /Ox+GlO~?/Oy) ,  where J = O(x, y)/O(~, 7?) 
is the Jacobian of the transformation. 
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Fig. 1 

The Cartesian components of the vectors Q1, El ,  G1 for the two-dimensional Euler equations have 
the form 

pu pv 
D + P puv 
"u2 G1 = , Q1 = E1 p u v  ' p v  2 + p 

p u l l  pv H 

E1 and G1 for the two-dimensional Navier-Stokes equations are written as 
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(rll = 2cgu/Ox, r12 = Ou/cgy + Ov/Ox, r22 = 20v/cgy, d ivV = Ou/cgz+ Ov/Oy), 

and the vector Q1 has the same form as for the Euler equations. Here e is the total energy per unit volume, 
H is the total enthalpy, p is the pressure, p is the density, V is the velocity vector, u, v are the Cartesian 
coordinates of the velocity vector, "y is the specific heat ratio, Moo is the free-stream Mach number,/~ is the 
dynamic viscosity, and Pr is the Prandtl number. 

The system of equations for a perfect gas is closed by the equation of state p = pT/3,M 2 .  
In the Euler and Navier-Stokes equations, the dependent variables are made dimensionless as follows. 

The Cartesian coordinates are referred to the characteristic length L, the velocity vector is referred to the free- 
stream velocity, the pressure is referred to the doubled free-stream velocity head, and the other hydrodynamic 
variables are referred to their free-stream values. 

2. In the physical plane, the computation domain is a duct bounded above and below by solid surfaces 
(Fig. 1). In solving the problem by a fully-implicit method we use the following boundary conditions to close 
the system of differential equations (1.1). 

At the inflow boundary, the following Riemann invariants are used for the Euler and Navier-Stokes 
equations: 

2c 0~ 0~ p 0~ 0~ 2c 0~ 0~ 
A1 = ~['----~ - u-~x - V-~y, A2 = - -  A3 = v - u = _ pV' -~x ~y ,  A4 ~ +  + v  
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where c is the speed of sound. These invariants correspond to radiation conditions of an outgoing wave. In 
solving the problem, at each point we analyze the signs of the eigenvalues 

of of cffo )2 of of 
) ' 

0f 0f 0f 0f 

The signs determine the direction of perturbation propagation relative to ~ = const. For Ai /> 0, the 
corresponding invariant is computed from the free-stream gas-dynamic variable values. For Ai < 0, linear 
extrapolation of Ai from the gas-dynamic variable values at interior points of the computation domain is 
used. 

At the outflow boundary, we use "mild" extrapolations of the vector of the desired gas-dynamic 
variables F = (u, v, p, T) t with approximations of the form 3Fi - 4Fi-a + Fi-2 = 0, instead of extrapolations 
of the Riemann invariants. As has been shown by numerical experiments, this increases the stability of the 
iteration process used for the solution of the difference problem and makes it possible to simulate supersonic- 
flow regimes at the outlet and also some subsonic-flow regimes at the outlet. 

For the Euler equations on the upper and lower surfaces, we use extrapolation of the tangential velocity 
component V~ in the form V,~ +1 - 2V,. / + V/-1 = 0 (Vr = u at the upper boundary; Vr = u cos g + v sin a on 
the lower boundary, and cr is the local slope of the lower surface), V2v = 0 (V~v = 0 is the normal component 
of the velocity vector; VN = v on the upper boundary, and VN = u sin ~r - v cos a on the lower boundary), 
and extrapolation of the pressure with a constant derivative along the normal to the surface (Op/ON = 0), 
H = Hoo. For the Navier-Stokes equations on the upper and lower surfaces, we use the at tachment and 
nonpenetration conditions u = v = 0 and extrapolation of the pressure along the normal to the wall with a 
constant derivative (Op/ON = 0), T = Tw. 

3. To generate a computation grid for the two-dimensional problem, we use the integral method of [7], 
which is based on the Schwarz-Christoffel conformal mapping. The problem of computation-grid generation 
is reduced to the solution of a discrete integral equation that is completely determined by the duct geometry. 
After that, grid-point coordinates are computed by simple integration [8]. This impfies that  it is possible to 
generate various grids in a duct by a sufficiently fast algebraic method. 

In the variables ( and r/, the computation domain has the form of a rectangle and is covered by a 
uniform grid with given spacings h~ = (~m~ -- ~ , ) / N ~  and h~ = (r/~,~x - q~a,)/N~, where N~ and N~ is the 
number of grid points in the longitudinal and transverse directions. The metric coefficients at grid points are 
evaluated by numerical differentiation formulas. 

As Re increases, the thickness of the boundary layer adjacent to the solid surface decreases, and a 
sufficiently large number of grid points in the longitudinal direction relative to the solid surface is necessary 
for an accurate resolution of the flow field in this region. 

Let us consider first an algorithm of grid refinement in one direction, which is then easily extended to 
the two-dimensional case. Let several zones [ai, ai+l], i = 1 , . . . ,  N - 1, be distinguished in an interval [ax, aN], 
and let the grid contain M points. It is required to distribute the points among the zones so that a given 
fraction pi of the total number of points (~Pi = l )  is found in each zone. 

A continuous analog for this discrete problem is formulated without loss of generality as follows. It is 
required to find a rigorously increasing function f(~) which is defined in the interval [0, 1] and takes values al 
and a N at points 0 and 1, respectively, and values (ai+ai+t)/2, i = 1 , . . . ,  N - l ,  at points ~i+1/2 = (~i+~i+l)/2, 

i - 1  
where ~1 = 0, ~i = ~ Pk- The function f(~) must be sufficiently smooth. 

k=l  
The solution of this problem is not unique. A possible solution is constructed as follows. We consider 

a function h(() = d f /d ( ,  which is analogous to a grid step in the continuous formulation of the problem. We 
introduce the notion of the characteristic step of the ith zone: hi = (ai+l - ai)/(~i+a - (i), i = 1 , . . . ,  N - 1. If 
we integrate a piecewise continuous function h.(~) [h.(~) = hi for ~ E [~+,~+1], i = 1 , . . . ,  U - 1], we obtain 
a function f.(~) that satisfies the conditions of the problem, but is not sufficiently smooth, because, at the 
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points ~i, its derivative has a discontinuity of the first kind. 
To eliminate this disadvantage, we replace the discontinuities of the first kind of the function hi(~) 

at the points ~i by a continuous variation of h(~) from hi-1 to hi on an interval that contains the point ~i 
(i = 2 , . . . ,  N - 1). For each i, a function that realizes this smooth variation is denoted by gi(~), and the 
domain of the function is denoted by [yl, y2]; in this case, (yl + y2)/2 = ~i. The function gi(~) - (hi-1 + hi)/2 
must be uneven relative to the point (i. As g we can use the function 

1 hi_l )[s in(~(--~Z~)~ + 1] gi(~) = hi-1 + ~ (hi - 
\ Y2 -- Yl  / 

The domain of the function gi is to some extent arbitrary; in our calculations this is determined by the 
condition y2 - yl = min(pi, pi-1) for each ~i. 

The desired function h(~) coincides with h.(~) outside the domain of gi and is continuously extended 
to gi in the interval [y], y2]. The point-distribution function f(~) is obtained by integrating h(~) from 0 to ~. 
The function f(~) is doubly continuously differentiable. 

We extend the grid-refinement algorithm to the two-dimensional case. Let a grid that is uniform in 
the plane (~i j ,  r]ii), where i = 1 , . . . ,  N~ and j = 1 , . . . ,  Nn, be constructed by conformal mapping. Let a grid 
(Xij, l~j), where i = 1 , . . . ,  N x  and j = 1 , . . . ,  Ny,  correspond to the former grid in the plane (x, y). Suppose 
it is necessary to change the distribution of grid points in the transverse direction (along 7/). Let i = i0. For 
Xioj, ~oi (J = 1 , . . . ,  Ny) ,  we use the above algorithm of one-dimensional-grid refinement over j ,  and then 
repeat this procedure for all i0 = 1 , . . . ,  NX. The thus-obtained nonuniform grid can be used in calculations. 
In the plane ((, r/), the grid is defined by the point number being considered and is uniform. 

In the present paper, we choose two zones of thickness 2/~rR'e near the upper and lower boundaries of 
the computation domain. After refinement, each of these zones contains 20% of the total number of points in 
the transverse direction. 

4. The following integrointerpolation method is used to construct the difference scheme of our 
investigation. The difference analogs of conservation laws have the form 

Q n + l  n E n + I  _ E n + l  ,--,n+l _ G n + l  
j ,k  -- Q j , k  "4" j+ l /2 , k  j - 1 / 2 , k  jr  ~ t i , k+l]2  1 ,k -1 /2  -~ O, 

r h~ h, 7 

where n is the time-level number; j and k are the point numbers in the ~ and 7/coordinates, respectively; and 
r is the time step. The fully implicit scheme is conservative, i.e., the conservation laws are satisfied even for 
discontinuous solutions. 

To approximate convective flows at half-integer nodal points, we use the Godunov monotone scheme [9] 
with the following approximate solution of the Riemann problem of discontinuity decay [10]: 

Ej+I/2 = 0.5(EL + ER -- R ~ ( A ) R - I ( Q R  - QL)). 

Here 

P 
Q = j  pu 

pv ; 
e 

= 

�9 (A1) 0 0 0 
0 0 0 
0 0 0 
0 0 0  (x4) 

and R is a matrix whose columns are the right eigenvectors of the operator 0 E / 0 Q .  The left QL and right 
QR values of the dependent variables Q are calculated using the second-order monotone upstream scheme 
for conservation laws (MUSCL) by the formulas QL = Qi = 0.5gi, QR = Qi+I - 0 . S g j + l ,  and gj = 
f (Aj+I /2Q , Aj_I/2Q ). In these ca!culations, the following function kg(A) and the limiter f ( x ,  y) are used: 

x, xy > 0 and Ix[ ~ [y[, ( 
f ( x , y ) = m i n m o d ( x , y ) =  y, x y > O a n d [ x [ > [ y ] ,  ~ ( A ) = ~  [A[ for [A[/>~, 

(A 2 +~2)/(2~) for [A[ < 
0, zy ~ 0, 

Here ~ is a small parameter whose value is 0.1 for the Euler equations and 10 -3 for the Navier-Stokes equations. 
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To calculate eigenvalues and eigenvectors, we use the Roe method [10] for the approximate solution of 
the problem of discontinuity decay: 

= ' u L R  = ' = V r  

(the subscripts L and R correspond to the gas-dynamic variable values to the left and right of the half-integer 
nodal point at which the flow is approximated). 

A second-order central difference scheme is used to approximate the diffusion component of the flux 
vector in the Navier-Stokes equations. 

The approximations used for the two-dimensional Euler and Navier-Stokes equations consist, in the 
general case, of 9 and 13 points, respectively. 

Two methods of approximating the convective flux were tested at half-integer nodal points adjacent to 
the boundaries of the computational domain. The first method introduces a fictitious nodal point outside 
the computation domain with subsequent computation of the fluxes by the second-order total variation 
diminishing (TVD) scheme. The gas-dynamic variable values at the point are computed by extrapolation 
from the computation domain with a constant derivative. The second method uses a nonmonotone two-point 
centered difference scheme of second-order accuracy. 

A comparison of these methods has shown that they yield approximately identical results for the Euler 
equations (the maximum differences are on the order of 8%). For the Navier-Stokes equations, the second 
method ensures faster convergence of the iterative process. The fact that the centered difference scheme is 
nonmonotone is apparently of no importance in the presence of physical viscosity. Since, in this study, we 
compare the results obtained for the Euler and Navier-Stokes equations, the second method is used in both 
c a s e s .  

The implicit nonlinear difference scheme obtained is unconditionally stable for a linear problem. This 
makes it possible to find steady-state solutions of difference equations for a single infinitely large time step. 

5. The nonlinear system of difference equations obtained by approximation of the differential system 
(1.1) can be written as F(X) = 0, where X is the vector of the unknown variables and F is a nonlinear grid 
operator. For the two-dimensional Euler and Navier-Stokes equations, dim (F) = dim (X) = 4 x Nx x Ny. 

In the present paper, we used the algorithm X/v+a = X/v - rN+xD-IF(X/v),  D = 0F/0X2v to solve 
this system. This is the modified Newton method with a quadratic convergence rate for rH = 1. In the process 
of numerical solution, the parameter r/v is defined by the formula [11] 

(AX2v - AXN-a, X ~  - XN-X) 
rN+I = ( A X N  - A X N _ I )  2 ' 

where AXN is a correction vector. As the iterative process converges, rN -* 1. 
The Jacobian matrix is formed by means of finite increments of the residual vector with respect to the 

vector of the desired nodal variables. When the Euler equations are approximated by the scheme described 
above, the operator 0 F / 0 X  has a sparse block 9-diagonal structure. When the Navier-Stokes equations are 
approximated, the operator has a 13-diagonal structure. The elementary block of these structures is a 4 x 4 
dense matrix. 

The linear algebraic system obtained in each iteration is solved by a direct method of LU factorization 
(the matrix OF/OXN = L x U, where L and U are lower and upper triagonal matrices). 

To reduce the total number of arithmetic operations, the sparseness structure of the matrices L and 
U is initially analyzed, and the unknowns are then renumbered by generalized nested dissection [12]. This 
method has been tested widely in numerical experiments, and its robustness and high effectiveness have been 
proved [1, 13]. 

6. The computation domain is a duct of variable cross section (Fig. 1). The height of the duct inlet 
H0 is used as the characteristic linear dimension. The relative length of the duct is I = l*/Ho = 4, and the 
relative length of the inlet is fin = 1. The transition from the inlet to a duct section of lower height ("throat" 
with hthroat  = 0 . 7 5 )  is realized in a region with length It  - -  1 = 0.6869 with constant wall slope of 0 = 20 ~ 
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Fig. 2 

The relative length of the "throat" is I d t r o a t  = 2.3131 or, relative to the throat  size,/throat/hthroat = 3.08. 
The computat ions are performed at a constant duct-inlet Mach number  Moo = 4.0 for an ideal and 

viscous perfect gas with specific heat ratio 7 = 1.4, Prandt l  number  Pr = 0.7, and with dynamic viscosity that 
is an exponential function of temperature (/z ,~ T~ The streamlined surfaces are assumed to be isothermal 
with a temperature  factor T,~0 = Tw/To = 0.5, where To = 1 + 0.5(7 - 1)M~ is the tempera ture  of free-stream 
retardation. 

The viscous-gas variant (Reoo = 1000, Moo = 4, and Two = 0.5) is computed on 101 x 61 and 101 x 121 
grids to est imate the computation-grid effect on the modeling results. Comparison of the results has shown 
that  they differ by only 1-2% in regions in which the variables have extrema [6]. This suggests that ,  for the 
problem considered, a 101 x 61 grid resolves fairly well all features of the flow field, and its further refinement 
does not introduce large quanti tat ive changes into the results. 

In spite of this, all the results in the present paper are obtained on a 101 x 101 grid by using a second- 
order monotone scheme to provide for the best resolution for the extrema of the desired functions. The  average 
CPU time for each variant is 0.8 h on an RS-6000 work station. 

7. The various isoline patterns and tomograrns obtained for the flat duct  give a general idea of the flow 
structure and the effects of the Reynolds number. As an example, Fig. 2 gives isoline pat terns of M = const, 
and Fig. 3 shows tomograms of the temperature field. 

For the smallest Reynolds number used (Reao = 103), the internal-friction forces manifest themselves 
over the entire flow field. The  perturbations from the inlet edges caused by a thick boundary layer propagate 
downstream as shock waves and are confined to a comparatively small free-stream region at the inlet. The 
flows at the lower and upper  surfaces begin to interact at z ~ 1, i.e., the per turbed flows at tach at a distance 
of the order of the characteristic linear dimension. 

In the per turbed flow field, thick boundary layers, which leave almost no place for the inviscid core of 
the flow, hardly allow one to distinguish the interacting shock-wave contours. The  flow past the wedge-shaped 
surface separates. The  resulting shock waves interact with the upper surface, forming a broad bounded region 
of separation, and leave the computat ion domain after reflection. On the upper surface in the flow past the 
separated zone, a shock wave forms which is incident on the lower surface, causes flow separation, and, after 
reflection, leaves the computa t ion  domain. 

As Re increases, the boundary layers thin down, and the perturbations from the inlet edges gradually 
degenerate into Mach lines. This leads to an increase in the inlet area, the "inviscid" flow core increases, and 
the system of interacting shock waves becomes more pronounced. The separated flow regions remain, move 
along the duct,  and vary in size. 

For the greatest Re numbers,  the flow structure is very close to the flow structure of an ideal gas. In 
this case, on the lower surface of the duct, separated flow regions are almost unnoticeable, whereas on the 
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Fig. 3 
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TABLE 1 

Recr 

103 

3.10 3 

104 

3.104 

l0 s 

3- l0 s 

l0 s 

Lower surface 
z s  ZR /kS 

0.944 1.063 0.119 
3.64 - -  
0.80 1.283 0.483 
2.61 2.80 0.19 
0.66 1.387 0.727 
2.72 3.275 0.555 
0.647 1.311 0.664 
2.747 3.604 0.857 
0.729 1.186 0.457 
2.981 3.768 0.787 
0.781 1.131 0.35 
3.170 3.756 0.586 
0.837 1.077 0.24 
3.368 3.802 0.434 

Upper surface 
xs  zR /ks 

1.35 2.42 1.07 

1.302 2.69 1.388 

1.237 2.87 1.633 

1.207 2.84 1.633 
2.400 2.2 0.20 
1.167 2.773 1.606 
2.438 2.143 0.295 
1.118 2.756 1.638 
2.437 2.0 0.437 
1.123 2.746 1.623 
2.484 1.917 0.567 

upper surface, a broad bounded separation flow region caused by the interaction of a shock wave with the 
boundary layer is observed. 

The isoline patterns and tomograms do not show a detailed structure of the separated zones. This 
structure is determined by analysis of the other flow characteristics. 

8. An analysis of the profiles of gas-dynamic variables for various cross sections of the duct gives the 
following useful information. 

In cross section 1-1, the profiles of gas-dynamic variables are strongly perturbed and already affected 
by the wedge-shaped surface in the vicinity of the lower surface. As a result, profiles are no longer symmetric 
about the axis of the duct. The flow past the corner point is separated here for all Re considered. As Re 
increases, the core of the inviscid flow increases in size and coincides with the free stream (as is the case 
within the framework of the Euler equations). 

In cross section 2-2 (the "throat" inlet), the profiles of gas-dynamic variables indicate the formation 
of a "classical" profile as Re increases. This profile is initially strongly perturbed and then becomes stepwise 
as the shock wave passes through cross section 2-2. The profiles also indicate that  for all flow regimes, the 
flow past the corner point of the "throat" is not separated. 

For cross section 3-3 (the intermediate cross section of the "throat" ), the profiles are strongly perturbed, 
and are in agreement with the Euler profile in the central part. 

For cross section 4-4 (the outlet cross-section of the "throat" in Fig. 4, where curves 1-4 correspond to 
Rec~ = 103, 104, 105, and 106, and curve 5 corresponds to inviscid flow), the profiles of gas-dynamic variables 
are strongly perturbed, since the reflected shock waves leave the computation domain for the "throat" sizes 
considered. In this case, even for the largest Re, the profiles of gas-dynamic variables differ from the Euler 
solution because of the differences in the flow structure, i.e., in the Euler solution, the outlet cross section is 
intersected by a single shock wave, while, in the viscid solution, it is intersected by two shock waves. 

As was noted above, a broad bounded area of separated flow forms on the upper surface of the duct. 
As an illustration of the structure of this region, Fig. 5 shows a series of profiles of the longitudinal-velocity 
component in the wall layer versus Re~ for two cross sections [x = 1.539 (a) and 2.308 (b), curves 1-4 
correspond to Reoo = 103, 104, 105, and 106]. For the inlet cross section (Fig. 5a) of the separated region, 
the velocity profiles are of the same type for all Re. For the cross section (Fig. 5b) in the central part of the 
separated region, the type of velocity profile changes with an increase Re. This indicates that at large Re, 
conditions for flow reseparation and reattachment are created in the separated region. 

9. The distribution of the pressure coefficient cp on the upper and lower surfaces of the duct (Fig. 6a 
refers to the lower surface and Fig. 6b to the upper surface; curves 1-4 correspond to Re~ = 103, 104, 105, 
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and 106, and curve 5 Corresponds to inviscid flow) shows once again that as the Reynolds number increases, 
the distribution of % basically approaches the Euler solution. Some local differences, however, remain. They 
are caused by the internal-friction forces. In the vicinity of the inlet edges of the duct, the pressure coefficient 
increases as x ~ 0. It must increase infinitely when the attachment condition is satisfied for the Navier-Stokes 
equations. In the viscous flow adjacent to the lower wall, the first local pressure maximum is located on the 
wedge-shaped surface. In addition, the second local pressure maximum forms in the "throat" of the duct. At 
large Re, this maximum is located downstream behind the reattachment point. 

On the upper surface, the absolute pressure maximum forms in the region of interaction of a shock 
wave with the boundary layer. Further downstream, the pressure decreases monotonically under the effect of 
the expansion fan caused by the corner point of the "throat." The pressure "plateau" ahead of the maximum, 
i.e., the region in which the pressure is nearly constant, indicates the presence of a developed separated flow 
region. 

The distributions of the skin friction coefficient C I = r w / ( O . 5 p o o V ~ )  over the upper and lower duct 
surfaces [Fig. 7, where C O = C f ~ ,  curves 1--4 correspond to Reoo = 10 3, 10 4, 10 5, and 10 6, (a) refers to 
the lower surface, and (b) refers to the upper surface] make it possible to determine the detailed structure of 
the separated flow regions. 

These distributions show clearly that two closed regions of separated flow form on the lower surface of 
the duct. One region is located in the flow past the wedge vertex, and the other is located in the "throat" of 
the duct near the outlet cross section. 

Some geometrical characteristics of the separated zones are given in Table 1. Here x s  and x R  are the 
separation and reattachment points, respectively, and A s = XR -- x S  is the length of the separated region. 
As Re increases, the separation points on the lower surface first move upstream and then downstream. The 
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lengths of the separated zones also vary in a nonmonotone fashion. 
The interpretation of the structure of the separated zones on the lower surface is evident and does not 

involve difficulties, whereas the situation on the upper surface of the duct is different. Additional information 
on the velocity field (see Fig. 5) is required to determine the structure of the separated zones and to interpret 
correctly the friction-stress distribution. From this it follows that a single broad closed separated flow area 
forms on the upper surface for all values of Re. As Re increases, however, conditions are created in this zone 
that lead to flow reseparation and reattachment. 

It should be noted that as the Reynolds number increases (Reoo > 104), the lengths of the separated 
zones adjacent to the lower surface decrease, and the length of the separated zone adjacent to the upper 
surface is stabilized. Hence, we can conclude that, although with an increase in Re the flow field approaches 
the Euler solution, it never reaches it. The limiting form of the viscous solution for Reoo ---* oo apparently 
contains a closed zone of reversed flow adjacent to the upper surface of the duct. 

The distributions of the local heat flux q* over the lower and upper surfaces of the duct are shown in 
Fig. 8, where q0 = q w ~ ,  qw = q~,/(O.5pooV~), curves 1-4 correspond to Reoo = 103, 104, 105, and 106, 
(a) refers to the lower surface, and (b) refers to the upper surface. The complex structure of the flow field is 
responsible for the complicated nonmonotone behavior of the heat flux on the streamlined surfaces. On the 
upper surface, the primary maximum of the heat flux is formed in the region of interaction of a shock wave 
with the boundary layer. This maximum is located downstream behind the reattachment point. On the lower 
surface, several local maxima of the heat flux with comparable magnitudes are observed. The sharpest of these 
maxima is located at the corner point of the "throat." The second maximum is located near the outlet cross 
section of the "throat" behind the flow reattachment point. The magnitude of this maximum depends almost 
not at all on Re. The third maximum is located on the wedge-shaped surface behind the flow reattachment 
point. This maximum appears and becomes predominant at large values of Re. 

The friction-stress and heat-flux distributions show that, for large Re numbers, there are oscillations 
in the numerical solution for the upper surface of the duct in the separated region. The amplitudes of these 
oscillations increase with an increase in Re. This phenomenon is likely caused by the physical instability of 
the laminar separated flow. 
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